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AbstracL The framework developed in pan I for defining Lie and covariant differentiation of 
spinors is investigated m show its compatibility with tensor calculus. The special rule played 
by conformal Killing vectots and conformal connections is also determined. 

1. Introduction 

In a previous article [l], hereafter referred to as 'part I', we presented a general formalism 
which enables one to define the concept of the covariant derivative V,$ of a spinor field p 
without any restriction on the spacetime connection. (As it was emphasized, these results 
can straightforwardly be re-interpreted as providing a definition of the Lie derivative L.& of 
a spinor field $ without restriction on the vector field X.) The literahue, however, contains 
the claim [Z] that 'we could only hope to define CxuA for vector fields XD satisfying 
Cxg,,, = kg,h. These are conform01 Killing vectors and correspond to conformal isometies' 
(In this quote, the symbol uA stands for what we write as $.) The question may thus be 
asked as to how our framework manages to avoid the apparent necessity of restricting 
attention to a particular vector field X in order to arrive at a meaningful definition of Lp+b 
(or to a particular spacetime connection in the case of V.y@). More precisely, we shall 
investigate hereafter, in the present part 11, why our formalism of part I is compatible, in 
general, with tensor calculus in contrast with the other frameworks for spinorial Lie and 
covariant derivatives available in the literature. 

We shall prove that the reason for which our formalism of part I is compatible with 
tensor calculus, without any restriction on the spacetime connection (or on the vector field X 
for the Lie derivative). is as follows. To establish the claim reproduced in the above quote 
[Z], i t  is necessary that a certain hypothesis be satisfied, namely, that the covariant derivative 
V, (or the Lie derivative Lx) should commute with the map A-] that enables one to define 
the tensorial equivalent of a spinor. (See section 3 for details.) Our formalism of part I 
does not impose this requirement of commutation and, as a consequence, is compatible with 
tensor calculus without restriction on the spacetime connection (or the vector field X for 
the Lie derivative). In other words, if one insists on a concept of derivative which enjoys 
the property of commuting with the map A-', then one must resh'ict attention to particular 
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spacetime connections (or particular vector fields X for the Lie derivative): on the other 
hand, if one is prepared to abandon the hypothesis of commutation, the necessity for any 
restriction disappears. Our construction is designed to be consistent with tensor calculus 
even in the non-commuting case and thus, contains the conventional formalism as a special 
case. 

The same statement may also be formulated in another manner. Consider the space of 
tensors 0, the space of spinors C and the abovementioned map A relating 0 to C. (See 
section 3 for details.) Let the covariant derivatives on 0 and C be denoted by V and 9, 
respectively. (In part I, we used the same symbol V for both the tensorial and the spinorial 
covariant derivative but it will prove clearer to employ henceforth two distinct symbols.) 
It is then possible to ask the question as to whether the following diagram commutes (for 
every vector field X): 

D J Hurley and M A Vandyck 

The commutation of (1.1) would be equivalent to the fact that, for every tensor r and vector 
X belonging to 0, one would have 

We shall establish that (1.1) does not commute and that (1.2) does not hold, unless the 
connection is conformal. The various formalisms for the covariant derivative of spinor fields 
available in the literature assume (sometimes implicitly) commutation of (1.1) and, therefore, 
must be restricted to conformal connections. Our formalism abandons the commutation 
hypothesis and thus does not require restriction of the connection. It is important to 
emphasize that the fact that, in general, (1.1) is not commuting does not imply that 
our spinorial framework of part I is inconsistent with tensor calculusf, as will be seen 
in sections 4 and 5. 

These considerations will be presented in five steps: in section 2, we shall make a 
special choice of basis in spinor space which simply amounts to selecting, for convenience, 
the standard Infeld-van der Waerden two-component spinor formalism [3-6] to perform 
the calculations that will follow. We shall show how to express ow framework of part I 
in the two-component language. Then, in section 3, we shall define the map A-’ that 
relates spinors to tensors and its covariant derivative 9xA-I will be calculated in section 4. 
All these results will be combined in sections 4 and 5 to investigate the question of 
the compatibility with tensor calculus and of the non-commutation of and A-’, or 
equivalently of the non-commutation of diagram (1.1). Finally, in section 6, a geometrical 
interpretation of this non-commutation will be provided in terms of the concept [7] of ’flag 
pole’ of a spinor. 

Following the method adopted in part I, we shall exclusively develop here, in detail, 
the formalism of the covariant derivative ex. There is no difficulty in reinterpreting the 
construction as a method for defining a Lie derivative Lx and explicit ‘translation rules’ 
for performing this re-interpretation are found in appendix 1 of parl I. 

t The authors t M  the referee for indicating the desirability of emphasizing this poinl 
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2. Choice of basis 

In part I, we introduced the bundle PS+(M) of spin frames above a manifold M as the 
double covering of PO+(M),  the bundle of (positively oriented) orthonormal frames above 
M .  Their structure groups are, respectively, the spin group SP(4), which is a subset of the 
real Clifford algebra C,l(E),  and the special orthogonal group SO(3, I) ,  with Lie algebras 
denoted by sp(4) and so(3, l), respectively. (See part I for details.) An assignment of a 
family of spin frames over M is then a section U of P S t ( M )  and a spinor field @, 
a linear combination of the basic vectors of U 

@ = p Z(M). (2.1) 

Furthermore, the covariant derivative VX@ of @ was defined as [I] 

where and *Ai$ denote, respectively, the symmetric and antisymmetric parts of the 
spacetime connection Ait in an orthonormal frame e(e), k is a free parameter (to be 
determined later) and y is a representation of the Clifford algebra in spinor space so that ys 
is an operator acting on a spinor for every s in C,I@t). Explicit expressions for dit, 'dfii 
and *AGO in terms of the connection components rase, the non-holonomicity Cap*, the 
contorsion Qea; and the non-mehicity Hspi of spacetime are found in part I, the notation 
of which we follow here, apart from some minor changes introduced for future convenience. 

As mentioned in the introduction, all our considerations will be presented in the Infeld- 
van der Waerden [3-6] two-component spinor formalism. In order to relate it to the 
formalism of part I, more information is required about representations of the Clifford 
algebra C3,1(R). In particular, we need to know the relationship between the matrices yfiM, 
of the representation y used in (2.2) and the Infeld-van der Waerden symbols ufi$ of the 
two-component formalism [7]. We must also clarify the link between the spinors defined in 
part I, such as @ of (2.2) above, and the two-component spinors. In the present section, we 
shall exclusively state the translation of (2.1) and (2.2) in two-component language, details 
about the construction of the two-component formalism being available in appendix 1. 

The two-component formalism considers, essentially, that spinor space S decomposes 
as a direct sum of an even part S+ and an odd part S- as S = S+ @ S- with the bases Z(M) 
and icN) of S and its dual S* = (S+)* @ (S-y respectively decomposed as 

A spinor @ may thus be written as 

@ = + U%,<) (2.4) 

where the components U" and ui transform respectively, under a change of basis, by an 
SL(2, C) matrix and its complex conjugate. 
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Spinor space S also possesses a metric tensor B which reads 

B = H + R ‘H Eobz(a) 8 P‘b) (2.5) 

where 6.b is the antisymmetric matrix 

(2.6) 

and the bar denotes complex conjugation. Moreover, the Duac matrices Y”N appearing in 
(2.2) are given in terms of the anti-Hermitian matrices a”,,,, the Weld-van der Waerden 
symbols, by 

More details about the properties of the symbols a@’,,, are found in appendices 1 and 2. 
We have now at our disposal enough information to establish the link between the 

framework of part I and the two-component formalism. For instance, by virtue of (2.2). 
(2.3) and (2.7), the covariant derivative of a basis (,,,)) of S’, the dual of spinor space 

S, reads 

p) 

- = A d f i G ( x ) ( a ” ) ~ b $ b )  + k -,,fly SdPs(X)a(u) 
4 

These derivatives will play a fundamental role in the forthcoming calculations. 
In order to be able to detennine how the covariant derivative (2.2). (2.8) circumvents 

the apparent necessity [2], mentioned in the introduction, of restricting the connection dfi, 
to some special case in order to arrive at a definition of v x  which is compatible with tensor 
calculus, it is necessary to establish results about the covariant derivative of the map A-’ 
that relates spinor space to the space of tensors. Therefore, the following section will be 
devoted to introducing the concept of A-’, the relevant covariant derivative being obtained 
in section 4. 

3. Tensor map A-’ 

From the Infeld-van der Waerden symbols U”b of (2.7). it is possible to construct a map 
A which relates the cotangent space T‘M of M to the space (S-)* E3 (S+)* as 

.. 
A ( A . ~ @ . ) )  s = ~ ~ ~ f i ~ ~ $ b )  2;“) ,.,bib = aflcbeti (3.1) 

which is equivalently expressed, given the canonical isomorphism between T”M and T M ,  
as 

A = ojine@) 8 $6) 8 $0). (3.2) 
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(Spinor indices are raised and lowered using the spinor metric introduced in (2.5) and (2.6).) 
Obviously, there is no obstruction to extending A as a map from (T'M)"" to 

[(S-)* @ (S+)*l"" for any n. If n = 2, which is all that will be used explicitly in the 
forthcoming calculations, this extension reads 

. .  
A = ufiiauPib[e(j,) @ $6) @ ;(a)] @ [e(;) 8 ~ ( b )  8 P)]. (3.3) 

In particular, one may employ A to find the image A@) of the spacetime metric 
E rl ,a) @ as 

P" 

(3.4) A@) = qP+daOo fi. bbe -(a) @ ;(a) 8 z@) 

A(g) = ceObcahj(a) @ $ a )  @ $b) @ $b) 

;(Ob). 

As a result of lemma 2 of appendix 2, this simplifies to 

(3.5) 

which will be important in section 4. 
Finally, if one introduces the matrices ufiaU satisfying 

,$a,;. o* - - s( (3.6) 

the map A can be inverted, by virtue of (3.3), to the map A-' from [(S-)* @ (S+)*]"' to 
(T*M)@* given by 

A-' = U ~ ~ Q ~ U , ) ~ [ & )  @ i( ] @ [e(') @ ~ ( j , )  @ z(b)]. (3.7) 

The same matrices uj,nn render it possible to extend A even further, in an obvious fashion, 
from 0 = (T'M)"" @ (TM)""' to Z = [(S-)* @ (S+)*Ian @ [S- @ PI""' for any n 
and m. This enables one to relate the space 0 of tensors n times covariant and m times 
contravariant to the space Z of spinors. It will be seen in sections 4 and 5 that the non- 
commutation of A-' and e~ is what enables our formalism to be compatible with tensor 
calculus without restriction on the spacetime connection. 

4. Covariant derivative of the map A-l and compatibility with tensor calculus 

The fundamental idea behind the verification that the covariant derivative (2.2). (2.8) 
is compatible with tensor calculus without restriction on the spacetime connection is to 
calculate the covariant derivative Vxt of an arbitrary tensor field t via the map A between 
tensors and spinors as 

Vxt = Vx {A-'[A(t)]] = (?xA-')[A(t)] + A-'[?x[A(t)]). (4.1) 

It is important to emphasize that this calculation assumes that the covariant derivative 
commutes with contractions and satisfies the Leibniz rule. 

The right-hand side of (4.1), involving the spinorial operator 9 defined in (2.8) and the 
map A of section 3, can be evaluated. The result of the left-hand side, however, is known 
from tensor calculus since the left-hand side involves only the tensorial operator V. If the 
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right-hand side agrees with the result from tensor calculus, we shall say that the spinorial 
covariant derivative e is compatible with tensor calculus. 

A direrent but related matter is whether, in (4.1), the term (e,yA-')[A(r)] muyalways 
be ussumed to vanish (for every r )  without restriction on the spacetime connection. By 
virtue of (4.1), this would be equivalent to investigating the possible restrictions imposed 
on the connection by the constraint 

D J Hurley and M A Vmdyck 

(with a very slight abuse of notation in the last line). Assuming that (4.2) holds for every 
tensor r is, of course, equivalent to imposing 

0 = [ex, A-']. 

If it is the case that (4.3) holds, (4.1) simplifies and becomes 

V x s  = A-'(+~[A(T)]) 

which is equivalent to the commutation of the following diagram 

D (T*M)@" 0 (TM)"m -+ [(S-)* 0 (S+)']@" 0 [S- 0 S']""' 

o x 1  l a x  
A '  kT*M)@n 0 (TM)"' + [(S-)* 0 (S+)*]@" 0 [S-  0 S+]@"' 

(for every vector field X), as announced in (1.1) and (1.2) of the introduction, 

(4.3) 

(4.4) 

(4.5) 

Both the compatibility with tensor calculus (4.1) and the commutation of diagram (4.9, 
or equivalently the vanishing of the commutator term in (4.2). should be addressed for the 
most general tensor r in (T*M)@" 0 (TM)@"'. Such a calculation is very cumbersome to 
develop in detail and, therefore, we shall only display the results, in the present section 4, 
when r is a one-form. (This special tensor r will then be denoted by A so as to avoid 
confusion with the general case.) In other words, we assume that n = 1 and m = 0 in (4.5). 

When all the calculations have been preformed, the two terms on the right-hand side of 
(4.1) with r = A read 

(4.6) 
I( 

A-'{f7x[A(A)]] = --q'" sdis(X)A + [ X ( A f i )  + *.4,i;(X)Ac]eG). 
4 

If our formalism is compatible with tensor calculus, the two right-hand sides of (4.6) must 
add up, according to (4.1), to the correct tensorial expression for VxA. After using the 
expression for the decomposition of the connection into its symmetric and its antisymmetric 
part, given in part I. one finds that the terms on the right-hand side of (4.6) add up to 

[X(A,i) - A~r'fipeX']e(~) (4.7) 
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which indeed gives the correct tensorial answer for VxA. This settles the question of 
compatibility with tensor calculus, at least for tensors belonging to T * M ,  namely, one- 
forms. 

The problem of the vanishing of the commutator in (4.2) with r = A ,  or equivalently 
the problem of the commutation of (4.5) for n = 1 and m = 0, is answered by considering 
(4.6) again: it is possible to establish that the constraint 

0 = 4(?xA-’)[A(A)] = kqKuSdp(X)A + 2XaH&cseOi)A’ (4.8) 
is satisfied for an arbitrary A iff the spacetime connection is conformal. (This proof 
requires using again the symmetric and antisymmetric decomposition of the connection 
found in part I.) In other words, the diagram (4.5) commutes iff the spacetime connection 
is conformal. 

All these results will be analysed in the conclusion. Let us first discuss their extension 
to more general tensors. 

The calculations (4.6H4.8) could be repeated when the tensor r in (4.1) and (4.2) is 
a vector V belonging to T M ,  namely, when n = 0 and m = 1 in (4.59, instead of being 
a one-form as in the above treatment. Then, the most general tensor could be built from 
tensor products of one-forms and vectors. (It is always assumed that the Leibniz rule holds 
for the tensor product, as emphasized after (4.1).) This is a purely technical routine and 
need not be pursued here in detail. 

On the other hand, performing more explicitly the case where the tensor r in (4.1) 
and (4.2) is the metric tensor g turns out to be enlightening for two reasons: first, the 
expressions corresponding to (4.6) are simpler than the latter; and secondly, the constraint 
corresponding to (4.8) is also more transparent from the point of view of clarifying the 
special role played by conformal connections (see below). We are thus, hereafter, going to 
establish the analogues of (4.6) and (4.8) for the metric tensor g. Given that the metric is a 
two-tensor, this will also give us the opportunity of showing how the Leibniz rule is to be 
employed. 

In order to proceed in a clear fashion, we shall begin by calculating, in the remainder 
of this section, the values of v ~ [ A ( g ) ]  and (?xA-’)[A(g)].  Then, in section 5, these 
expressions will be combined together, as in (4.1) with r = g, to check compatibility with 
tensor calculus and they will also be used to investigate the commutation of diagram (4.5). 

The expression e x [ A ( g ) ]  is easily obtained from the delinition (3.5) of A(g), the 
covariant derivatives (2.8) of the bases Y(‘4 and Z(*) and the Leibniz rule as follows: 

- 2frx[A(g)] = -2eabek6?x[Z(k) @ 8‘) @ E(b) @ i(b)] 

= - 2cabckb[(exz(i))  8 $4 @ $6) @ $b) + @ (ex$d) @ @ $b) 

+ ~ ( i )  @ @ (ex,$bl) 8 $4 + $) @ $4 @ $6) @ ( ex$b) ) l  

= { k f ”  s&;(x)€.b€& (4.9) 

f *Ai; (x) [€ab((US’) )6 ,  - (Oi’)66) + €,$((U”)bu - (Oiir)nb)l}  

@ $4 @ $6) @ 2;” 

= kq’” ‘Ai i (X)A(g)  

where, in the last step, use has been made of lemma 3 of appendix 2. One should note bow 
much simpler the final answer of (4.9) is than the corresponding expression for ?x[A(A)] 
obtainable from (4.6) and valid for a one-form A .  
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A similar derivation yields 9xA- l ;  it is more cumbersome than that leading to (4.9), 
merely because of the five tensor products appearing in the definition (3.7) of A-'. The 
treatment can bo somewhat shortened if one first calculates the covariant derivative of the 
restricted inverse map denoted by 'A-' to avoid confusions with A-l and defined as 

RA-' ~ uiuae(i) 0 2 (a) 0 &I). (4.10) 

This intermediate stage is helpful since the complete map A-' of (3.7) is the tensor product 
of two reshicted maps of type 'A-'. 

To calculate v.yRA-', we apply again the Leibniz rule, this time to definition (4.10), 
use the expressions for the covariant derivatives of the basic vectors e(&), .?(a), &) and find 
that 

4 9 ~  RA-' = kq'"'dkG(X) 'A-' + (-4&~(X)u'o' 

+ 2*dcj(X)[uimU(u'b~. + ~ ~ ' " ( a " ) ~ , , , l ) e ( ~ )  Q @ &) (4.1 1) 

which may be simplified by employing lemma 4 of appendix 2. The result reads 

4 4 ~  'A-' = krf" 'dp;(X) 'A-' - 2[dii + d;p](X)~"~e(Q) Q E (6) 0 4.) 
- - kqPYSd..(x)'~-'  'U +x"...aG*ae@.' U P  8 +a) Q E(.) 

(4.12) 

where the last step uses the relationship, found in appendix 2 of part I, between the symmetric 
part of the connection and the non-metricity. 

The covariant derivative 9xA-I of the complete map A-' is now readily obtained, by 
virtue of the covariant derivative (4.12) of the restricted map 'A-', as 

49,yA-I = 49, ('A-' @ RA-1) 

= [kq'" sdQ;(X) 'A-' + 2XcH&pDaW*e@) Q 4. a) 0 441 @ 

+ 'A-' Q [kq"" 'dB;(X) 'A-' + 2XcHcg;"Uue(B) Q &,) Q 3 ) 1  
= 2kq" Sdfi;(X)A-' + 2Xc H2gpu.baau~ 

x [e @) Q e(') Q ?(a) Q Q ~ ( 6 )  Q g(b) +e(') Q e(&) Q 4) Q Q iy) Q o(,)I. 

(4.13) 

In particular, when applied to the spinor A(g), the covariant derivative GxA-' yields, by 
(3.5), (3.6) and (4.13). 

2(fr,A-')[A(g)l = kq'" 'dfi;(X)g + 2XcH~,j;e@) 0 e@) (4.14) 

which should be compared with the expression for (vxA-')[A(A)] of (4.6), valid for a 
one-form A. 

We are now in the position to combine all our results together to investigate the questions 
of the compatibility with tensor calculus and of the non-commutation of A-' and 9X;both 
in the case of the metric, i.e. 5 = g in (4.1) and (4.2). This will be performed in the next 
section. 
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5. Compatibility with tensor calculus and the non-commutation of ?,y and A-' for 
the metric 

Having calculated, in (4.14) and (4.9), expressions for (exA-')[A(g)] and Vx[A(g)l, 
respectively, it is now possible to substitute them in (4.1), with t = g, to find 

4Vxg = 4(exA-')[A(g)l+ 4A-'{ex[A(g)ll 

= 4[9x, A-'l[A(g)l+4A-'~~x'x[A(g)lJ 

= [ u ( q ~ y S d , j p ( X ) g + 4 X B H ~ p t e @ ) @ e e ( " ]  + [-Zk@'sd,jp(X)g] 
(5.1) 

- 4x". @ e("). 
(IP" - 

As one can see, the final result is identical to that provided by tensor calculus, namely, 
vxg = x H -  UP" - -e@) @ e(*) given in appendix 2 of part I and this is the case without any 
restriction on the spacetime connection. (Compatibility with tensor calculus is also much 
more obvious in the case (5.1) of the metric than in the case (4.6) of a one-fom, which 
is why we presented the details of the former rather than of the latter.) Note that this 
compatibility with tensor calculus is achieved independently of the value of k .  In particular, 
the covariant derivative with k = 0, used by some previous authors such as [8-121, is 
compatible with tensor calculus. 

In order to identify now the most general type of connection which yields a vanishing 
commutator term [ex, A-'][A(g)] in (5.1), oracommutingdiagram (4.5), we return to (5.1) 
and solve the constraint 0 = [ex, A-'][A(g)] for the non-metricity H. After substitution 
of s d p ; ( X )  by its value - X B H ~ p ~ / 2  from (3.12) of part I, there follows 

O =  X B ( - k q @ Y H . * . q  USY @ u + 4 H a p o ) e @ L ) @ e ( " .  (5.2) 

If k # 1, the constraint is only satisfied (independently of X )  by the hivial solution Hepo = 0 
which implies that the connection must be metric-compatible. On the other hand, if k = 1,  
the unique solution of (5.2) is 

(5.3) apv - n%v 

for an arbitrary V ,  which corresponds to a conformal connection. 
We have thus, simultaneously clarified the exceptional nature of conformal connections 

and shown that, among the family of derivatives (2.2) depending on the parameter k,  one 
member, namely, that with k = 1, is singled out by the property that it allows the commutator 
[VX, A-'] to vanish and diagram (4 .5)  to commute in the case of a conformal connection. 
In general, however, i.e. in the case of a non-conformal connection, the commutator is 
crucially non-vanishing and diagram (4.5) non-commuting. (Indeed, were it not for the 
presence of the commutator term in (5.1) our framework would be, in general, inconsistent 
with tensor calculus.) This algebraic fact has a simple geometrical interpretation in terms 
of the 'flag pole' of a spinor under parallel transport. The following section will be devoted 
to relating the commutator to properties of the parallel transport. 

H a . .  - V. 

6. Geometrical interpretation of the non-commutation 

In section 3, we introduced a map A relating tensor space to spinor space and its inverse 
A-'. (In the restricted case of a covariant tensor of rank 1, belonging to T'M, and a 
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spinor belonging to the space (S-)* Q (S+)*, these maps were denoted by 'A and RA-' ,  
respectively.) By virtue of (4.10), the tensor associated to the spinor 

D J Hurley and M A Vandyck 

(6.1) ~ A ,  $d)  8 $a) 
YO 

by A-' (or RA-') reads 

A E A-'(z)  R A - l ( z )  e ( B ) c ~ ~ ~ ~ A a ~ .  (6.2) 

In particular, it makes sense to apply A-' to the special elements of (S-)* 8 (S+)* 

d = T i Q u  u - u u , i ( " ) .  (6.3) 

In this context, the unique oneform A associated to d = ii 8 U by A-' is called [7] the 
'flag pole' of U. This concept of flag pole iUuminates the problem of the non-commutation, 
in general, of ex and A-' as will now be seen. 

Consider a vector field X and a spinor field U = U,,@'). The covariant derivative of A,  
the flag pole of U ,  may then be calculated as 

which are of the form 

VxA = Vx[A-'(iiQ U ) ]  = (exA-')@@U) + A - ' [ V x @ 8  U)]. (6.4) 

Therefore, if U is parallel-transported along the integral curves rx of X ,  the second term 
on the right-hand side of (6.4) drops out and the flag pole of U satisfies, by (4.1) with 
r = A-'@ Q U). 

VxA = [ex, A-']@@U). (6.5) 

It follows that, unless the commutator vanishes, the flag pole is not parallel-transported along 
r x .  In other words, the flag pole of the parallel-transported spinor does not agree with the 
parallel transport of the flag pole of the original spinor unless the commutator vanishes. 
This means that the operations 'parallel transport' and 'flag-pole taking' commute iff 
[ e x .  A-'] = 0, which happens, as proved in section 5, iff the connection is conformal: We 
thus, have a geometrical interpretation of the difference between the framework introduced 
in part I for the covariant derivative and other formalisms, on which we shall elaborate in 
the conclusion. 

7. Condusion 

In this work, we investigated further the framework developed [I]  in part I for defining the 
covariant derivative of a spinor field. The particular characteristic of this formalism lies 
in the fact that its concept of derivative is meaningful without restriction on the spacetime 
connection. 

We then introduced, in section 3, a map A-' which relates spinor space to tensor space 
in such a way that it becomes possible to ask the question as to whether the spinorid 
covariant derivative of part I is consistent with tensor calculus. In sections 4 and 5, we 
checked that the construction was indeed consistent with tensor calculus for an arbitrary 
connection. This contrasts with statements found in the literature (e.g. in [2]) and according 
to which the concept of covariant derivative requires the connection to be conformal. 
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The origin of the difference between our framework and others was also investigated 
in sections 4 and 5. It was found that the apparent necessity of restricting attention to 
conformal connections is circumvented by our formalism since the latter does not possess, in 
general, one of the properties assumed (sometimes implicitly) in other approaches, namely, 
the commutation of the covariant derivative and the above-mentioned map A-’ or 
equivalently the commutation of diagram (4.5). 

This non-commutation was interpreted geometrically in section 6 by making use of 
the notion of ‘flag pole’ of a spinor [7]. It was shown that, when a spinor is parallel- 
transported according to our method, its flag pole, in general, is not parallel-transported 
unless the covariant derivative commutes with the map A-]. If one insists on imposing 
parallel transport of the flag pole during parallel transport of the spinor, then it is necessary 
and sufficient to restrict attention to conformal connections, which is normally performed 
in the literature [Z]. In other words, our framework is consistent with tensor calculus in 
all cases, i.e. for an arbitrary connection (in contrast with the other formalisms), and this 
is achieved at the expense of abandoning, in general, the requirement of commutation of 
flag-pole taking and parallel transport. The only instance in which these operations may 
consistently be assumed to commute is when the transport is performed by a conformal 
connection. 

The appearance of a conformal connection as an exceptional case is consistent with the 
fact that the flag pole of any spinor U in S+ is null [7]. Consequently, if, during parallel 
transport of a spinor, the flag pole is also to be parallel-transported, the connection must 
respect null vectors and thus, be conformal. It is, however, by no means necessary, from 
the mathematical point of view, to adopt this requirement of parallel transportation of flag 
poles; we investigated here, and in part I, a definition of the covariant derivative which 
does not impose it and this does not lead to a self-contradiction or a contradiction with 
tensor calculus as shown in sections 4 and 5. This generalized concept of derivative would 
be necessary, for instance, to express consistently the Dirac equation in a spacetime with 
a connection more general than a conformal one. Another possible physical application 
would be the study of symmetries, via the Lie derivative, of classical theories involving 
spinors, as performed, for instance, in [12]. 
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Appendix 1. The Infeld-van der Waerden two-component formalism 

In order to clarify the relationship between our formalism of part I and the standard 
Infeld-van der Waerden two-component formalism [ 3 4 ] ,  we need some information about 
the Clifford algebra C3,] (R). We shall, therefore, hereafter, exclusively develop what is 
necessaty for our purposes, the reader being referred to the literature (e.g. [5 ] )  for algebraic 
details about C3.1 (R). 

The regular representation p maps C~,I@) into its endomorphism algebra as 

P :  s - p , :  p,dx) = s v x VS, x E c3.1 m ( A 4  
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where v is the Clifford product. This representation is reducible and its invariant subspaces 
are the left ideals of C3,1(W). Therefore, by definition, p is irreducible on any minimal left 
ideal of C3,l (R). Different choices of a minimal left ideal lead to different, but equivalent, 
representations and, therefore, no generality is lost in making any particular choice. When 
a choice has been made, the minimal left ideal selected is called spinor space (denoted by 
S in part I) and an element of this space is called a spinor. 

Consider now the complexification C3C1 of C3.](W). The following isomorphisms 
hold [5] 

c:l = M 4 ( 9  C3,1(W = M4(W ( A 4  

in which the symbol &(IF) stands for the algebra of square matrices of order n over the 
field IF. Moreover, the even subalgebras q.7 and C:,(IEf) of CE1 and C,l(R) satisfy 

c:; = ~ Z ( C )  @ C,tlcW) = M@). (A.3) 

Therefore. the matrix structure of Cfl  and C:: enables one to choose a matrix basis 
for Cg1 in which the elements of C B  are block diagonal, the off-diagonal components 
corresponding to odd elements of C&. We shall thus write an elements of CEl as 

D J Hurley and M A  lrandyck 

where Ei and 0, (i = 1,2) are complex 2 x 2 matrices referring, respectively, to the even 
and odd elements of C;l. 

Furthermore, it is a simple matter to check that the elements of Cfl of the form 

i n  which U and ir denote complex 2-columns and 0 is an abbreviation for the 2 x 3 null 
matrix, form a minimal left ideal Z of C.fl. As explained above, no generality is lost by 
adopting this particular minimal left ideal Z as spinor space S. Obviously, L of (A.5) is 
isomorphic to the complex 4-column 

?b-(;) 

and we shall thus, from now on, use this notation instead of the more cumbersome one of 
(AS) to denote the components of a spinor $. 

By virtue of (A.I), (A.4) and (Ah), the regular representation p acts on a spinor 9, an 
element of Z, as 

where a component notation is understood as in (A.6). In particular, ifs is a purely even 
element of C:,, the matrices 01 and 0 2  vanish so that 
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which proves that the components U and U transform independently of one another. They 
correspond. respectively, by definition. to the even and odd parts of @, each of them 
forming a so-called 'two-component' or 'Weyl' spinor. (In this terminology, the total 'four- 
component' spinor @ is called a 'Dirac' spinor.) 

In the subspaces S+ of the even part and S- of the odd part, we may denote a basis, 
respectively, by a(,) and E(,+ m ,  m = 1,2  and so construct a basis Z(w) of spinor space 
S = S + @ S - a s  

&!4) = (Z(,n) i ( m )  ) (A.9) 

with the corresponding dual basis Z c N )  of S* = (S+)* fB (S- )*  being given by 

(A.10) 

With this notation, the representation (A.8) may be rewritten as 

p$$ =ps[@MZ(~)l = pr[u"E(.) + uQZ(,i)l = EfpbZ(.) + E.$j,ubI(d) (A.ll) 

or, equivalently, as 

p$ = Efbi(") Q E(*) + E,"6Z(i) Q 26) s E c;:. (A.12) 

It is important to emphasize that we are, in fact, interested in the red  Clifford algebra 
C3.1 (a) and its (real) even subalgebra C3tl (R); we are only embedding them in a convenient 
fashion in the complex algebras C& and C::. Moreover, by (A.3). the complex even 
subalgebra 12:: contains twice as many free constants as the real even subalgebra C:, (na). 
Thus, in order to make half of C:: redundant, one may impose the condition that the two 
complex matrices of C;: be complex conjugates of each other. A similar requirement 
imposed on the representation (A.12) of C;: yields then the constraints 

- - - 
Eig = Efh = E',, &) = i(") p )  = p' (A.13) 

in which the bar denotes complex conjugation. 

operator on spinor space associated by p to the (real and purely odd) basic vector e@) is 
By the same treatment as that leading from (A.7) to (A.12), it is easy to show that the 

- ". 
2-"'pe<fi) = upbZ(Q) 8 $') f Ubiba(o) @ Z'b) (A.14) 

for certain 2 x 2 complex matrices U'$. (The factor ?.-'I2 bas been inserted for future 
convenience.) In part I and in (2.2) above, we used the symbol y to indicate a representation 
of C3.j (W) in spinor space S and, in particular, yfi = y&i, was the operator on S associated 
with the basic vector e@). It follows from (A.14) that, with our choice of the minimal left 
ideal Z as the spinor space S ,  the operator y c  reads 

- 
2-IPyP =  fib^(.) Q p(b) + o!iibi(u, Q $b) (A. 15) 

or, in a matrix form, based on (A.9) and (A.10). as 

(A.16) 
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The decomposition (A.16) of the Dm matrices y f i M ~  enables one now to recognize 
the complex matrices aimn as the Infeld-van der Waerden symbols of the two-component 
formalism. Indeed, by definition of a Clifford algebra, the Dirac matrices (A.16) must 
satisfy [ 11 

y P M p y " N  + y t M p y P P ,  = 2q'YSMN. 

When this equation is translated into a constraint on ,,fin, namely 

(A.17) 

pc .aa. vh c + d a f i f  = -Sab?gv (A.18) 

it is identical to that imposed on &mm by the two-component formalism 171 in such a way 
that the identification of afim,, with the Infeld-van der Waerden symbols is legitimate. The 
detailed calculation of the constraint, which is purely technical, can be found in lemma 1 
of appendix 2. 

In the construction so far, we have considered the real even subalgbra C&(W). In 
particular, the matrix Euh of (A.12) and (A.13) carries a representation of C:, (a) = Mz(C). 
However, the spin group of C&@) is isomorphic [SI to SL(2,C) and it is, therefore, 
permitted to take E",, as an SL(2 ,  C) matrix in (A.12) and (A.13). This restriction allows 
one to define a metric tensor B on spinor space S = S+ @ S- as 

H + R n E ~ ~ P )  8 a@) (A.19) 

in which cub is the antisymmetric matrix 

-(-1 0 1  o) (A.20) 

Such a metric is admissible since the tensor components cob. albeit not invariant under 
Mz(C), are invariant under SL(2, C). 

Appendix 2. Properties of Meld-van der Waerden symbols 

In the main text, four lemmas concerning the Infeld-van der Waerden symbols play an 
important role. This appendix is devoted to giving the main steps of the proofs of these 
lemmas, details being left lo the reader. 

Lemma 1. 

(B.1) 

Proof. From the Clifford-algebra relation (A.17), applied to the realization (A.16) of the 
Dirac matrices. there follows, after raising an index by (A.19) and (A.20). 

,,. JLC ,au. vh + ,,Ofofif = -6"bqgv. 
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We now make the hypothesis that the Infeld-van der Waerden symbols are anti-Hermitian, 
namely 

This comes from the fact [51 that C,,(R) admits an involutory anti-automorphism f defined 
as 

(B.4) t[e(lil) @ @ , . , Q ,e .)]  = e(P”) @ e@a.’) @ , , , Q 

The anti-Hemiticity of u*b is then a consequence [SI of (A.14) and the invariance of e(fi) 
under f.  By virtue of (B.3), it is possible to transform (B.2) into 

” .  
, , ’LY~,, = -,Gd.,. dC - u f i d n c d t u ~ ~ b  (B.5) 

which implies (B.1). 0 

This lemma is what enables one to interpret the quantities ufinb of (A.16) as the Infeld- 
van der Waerden symbols since (B.1) is precisely the constraint imposed on these symbols 
by the two-component formalism [7]. 

Lemma 2. 

qpvU’&UG&b 6&&. (B.6) 

Proof. The proof is based on the contraction of (B.l) with q’”cOe and also on the 
antisymmetry of the metric Q,. Details can be found in [7] since (B.1) is the standard 

0 equation on U”“ of the two-component formalism. 

Lemma 3. 
^ ^  -. 

(U”)& - (Ufi0)& = (U’”)h, - (Up”),h = 0. (B.7) 

Proof As a consequence of the anti-Hermiticity of the Infeld-van der Waerden symbols 
and the expressions (2.8) for up0, one obtains 

2(U’”),b - 2(u’”)h. = -a’&”$ fUGC“LT@tb + U l l t b U V f  - u”:bU’Ca (B.8) 
.. ” ^  . .. - ^ .  . .. 

which is manifestly antisymmetrical both in i ,  i and in a,  b. Moreover, for i and 3 fixed, 
the right-hand side of (B.8) is an antisymmetrical 2 x 2 matrix and, therefore, is proportional 
to Q,. This enables one to write 

. .. . ~. 1 .. . .. L. 

- U’t‘r.Uycb + U v ~ u U ’ ‘ ~  + O’C~U”‘~ - U”thU”‘u F’”€ah (B.9) 

for a certain antisymmetrical tensor F .  After contraction of (B.9) with 6‘‘’ and the use of 
(3.6), one evaluates F as 

(B.10) 

which establishes the lemma. 0 

2FP5 = - q P V  + q Y ’ L  - qPv + qW = 0 
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Lemma 4. 

D J Hurley and A4 A Vhndyck 

(B.11) 

Proof. It is a simple matter to manipulate the Clifford-algebra relation (A.17) to express 
the product of three Dmc matrices yfi in the well known [I31 form 

ufimyuaB ) 2 m + .pyu&bym = *to""" -6p+., 
@ 

2r lsPya - 2 f P y B ^  = y a y B y f i  - v"r"v8 = [y"ys,  vfi]l (B.12) 

Equivalently, this may be written 

4r16sya - 4rlw'lyB = [(' lyi' lyb - y B ^ y & ) ) ,  y9~1. (B.13) 

After substitution in (B.13) of the realization (A.16) of the Duac matrices in terms of the 
Infeld-van der Waerden symbols, a lengthy development exploiting the anti-Hermiticity of 
U-' and the antisymmetry of cob yields 

z $ p ~  .. - 28joB^dn = u f i m ~ ( - u ~ ~ n u B n m  ^ .  + ue^inuanh) + u f i ~ m ( - o ~ q i o B ^ ~ m  + u B ^ ~ h u ~ k m ) ,  
. 

~3.14)  

On the other hand, one may expand the left-hand side of (B. 11) in terms of the Meld-van der 
Waerden symbols by employing (2.8) for u'b and simplify the result by exploiting again 
the anti-Hermiticity of ubio and the antisymmetry of cub. The expression thus obtained is 
then recognized as the half of the right-hand side of (B.14) and the result follows. 0 
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